Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(7): 3924-3937, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38421610

RESUMO

RNA ligases are important enzymes in molecular biology and are highly useful for the manipulation and analysis of nucleic acids, including adapter ligation in next-generation sequencing of microRNAs. Thermophilic RNA ligases belonging to the RNA ligase 3 family are gaining attention for their use in molecular biology, for example a thermophilic RNA ligase from Methanobacterium thermoautotrophicum is commercially available for the adenylation of nucleic acids. Here we extensively characterise a newly identified RNA ligase from the thermophilic archaeon Palaeococcus pacificus (PpaRnl). PpaRnl exhibited significant substrate adenylation activity but low ligation activity across a range of oligonucleotide substrates. Mutation of Lys92 in motif I to alanine, resulted in an enzyme that lacked adenylation activity, but demonstrated improved ligation activity with pre-adenylated substrates (ATP-independent ligation). Subsequent structural characterisation revealed that in this mutant enzyme Lys238 was found in two alternate positions for coordination of the phosphate tail of ATP. In contrast mutation of Lys238 in motif V to glycine via structure-guided engineering enhanced ATP-dependent ligation activity via an arginine residue compensating for the absence of Lys238. Ligation activity for both mutations was higher than the wild-type, with activity observed across a range of oligonucleotide substrates with varying sequence and secondary structure.


Assuntos
RNA Ligase (ATP) , RNA Ligase (ATP)/metabolismo , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/química , Especificidade por Substrato , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Planococáceas/enzimologia , Planococáceas/genética , Engenharia de Proteínas , Mutação , Modelos Moleculares , Trifosfato de Adenosina/metabolismo , Oligonucleotídeos/metabolismo , Oligonucleotídeos/genética
2.
Protein Sci ; 32(9): e4743, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37515423

RESUMO

l-Malate is a key flavor enhancer and acidulant in the food and beverage industry, particularly winemaking. Enzyme-based amperometric biosensors offer convenience for monitoring its concentration. However, only a small number of off-the-shelf malate-oxidizing enzymes have been used in previous devices. These typically have linear ranges poorly suited for the l-malate concentrations found in fruit processing and winemaking, making it necessary to use precisely diluted samples. Here, we describe a pipeline of database-mining, gene synthesis, recombinant expression, and spectrophotometric assays to characterize previously untested enzymes for their suitability in biosensors. The pipeline yielded a bespoke biocatalyst-the Ascaris suum malic enzyme carrying mutation R181Q [AsME(R181Q)]. Our first prototype with AsME(R181Q) had an ultra-wide linear range of 50-200 mM l-malate, corresponding to concentrations found in undiluted fruit juices (including grape). Changing the dication from Mg2+ to Mn2+ increased sensitivity five-fold and adding citrate (100 mM) increased it another six-fold, albeit decreasing the linear range to 1-10 mM. To our knowledge, this is the first time an l-malate biosensor with a tuneable combination of sensitivity and linear range has been described. The sensor response was also tested in the presence of various molecules abundant in juices and wines, with ascorbate shown to be a potent interferent. Interference was mitigated by the addition of ascorbate oxidase, allowing for differential measurements on an undiluted, untreated wine sample that corresponded well with commercial l-malate testing kits. Overall, this work demonstrates the power of an enzyme-centric approach for designing electrochemical biosensors with improved operational parameters and novel functionality.


Assuntos
Técnicas Biossensoriais , Vinho , Malatos/análise , Malatos/química , Malatos/metabolismo , Vinho/análise
3.
PLoS One ; 18(5): e0285856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37192202

RESUMO

Pseudomonas aeruginosa causes a wide range of severe infections. Ceftazidime, a cephalosporin, is a key antibiotic for treating infections but a significant proportion of isolates are ceftazidime-resistant. The aim of this research was to identify mutations that contribute to resistance, and to quantify the impacts of individual mutations and mutation combinations. Thirty-five mutants with reduced susceptibility to ceftazidime were evolved from two antibiotic-sensitive P. aeruginosa reference strains PAO1 and PA14. Mutations were identified by whole genome sequencing. The evolved mutants tolerated ceftazidime at concentrations between 4 and 1000 times that of the parental bacteria, with most mutants being ceftazidime resistant (minimum inhibitory concentration [MIC] ≥ 32 mg/L). Many mutants were also resistant to meropenem, a carbapenem antibiotic. Twenty-eight genes were mutated in multiple mutants, with dacB and mpl being the most frequently mutated. Mutations in six key genes were engineered into the genome of strain PAO1 individually and in combinations. A dacB mutation by itself increased the ceftazidime MIC by 16-fold although the mutant bacteria remained ceftazidime sensitive (MIC < 32 mg/L). Mutations in ampC, mexR, nalC or nalD increased the MIC by 2- to 4-fold. The MIC of a dacB mutant was increased when combined with a mutation in ampC, rendering the bacteria resistant, whereas other mutation combinations did not increase the MIC above those of single mutants. To determine the clinical relevance of mutations identified through experimental evolution, 173 ceftazidime-resistant and 166 sensitive clinical isolates were analysed for the presence of sequence variants that likely alter function of resistance-associated genes. dacB and ampC sequence variants occur most frequently in both resistant and sensitive clinical isolates. Our findings quantify the individual and combinatorial effects of mutations in different genes on ceftazidime susceptibility and demonstrate that the genetic basis of ceftazidime resistance is complex and multifactorial.


Assuntos
Ceftazidima , Infecções por Pseudomonas , Humanos , Ceftazidima/farmacologia , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Combinação de Medicamentos , Compostos Azabicíclicos/farmacologia
4.
Enzyme Microb Technol ; 163: 110153, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36403327

RESUMO

DNA ligases are widely used in molecular biology to generate recombinant DNA. However, having evolved for nick-sealing, they are inefficient at catalysing the blunt-ended ligations that are critical to many biotechnological applications, including next-generation sequencing. To facilitate engineering of superior blunt-ended DNA ligases, we have developed and validated a compartmentalised self-replication protocol that can select for the most effective ligases from a library of variants. Parallel cultures of Escherichia coli cells expressing different plasmid-encoded variants act as both a source of template DNA for discrete whole-plasmid PCR reactions, and a source of expressed ligase to circularise the corresponding PCR amplicons. The most efficient ligases generate the greatest number of self-encoding plasmids, and are thereby selected over successive rounds of transformation, amplification and ligation. By individually optimising critical steps, we arrived at a coherent protocol that, over five rounds of selection, consistently enriched for cells expressing the more efficient of two recombinant DNA ligases.


Assuntos
DNA Ligases , DNA Recombinante , DNA Ligases/genética , Plasmídeos/genética , Reação em Cadeia da Polimerase , Escherichia coli/genética , Ligases/genética
5.
Biochemistry ; 62(2): 158-162, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35820168

RESUMO

Natural evolution has been creating new complex systems for billions of years. The process is spontaneous and requires neither intelligence nor moral purpose but is nevertheless difficult to understand. The late Dan Tawfik spent years studying enzymes as they adapted to recognize new substrates. Much of his work focused on gaining fundamental insights, so the practical utility of his experiments may not be obvious even to accomplished protein engineers. Here we focus on two questions fundamental to any directed evolution experiment. Which proteins are the best starting points for such experiments? Which trait(s) of the chosen parental protein should be evolved to achieve the desired outcome? We summarize Tawfik's contributions to our understanding of these problems, to honor his memory and encourage those unfamiliar with his ideas to read his publications.


Assuntos
Proteínas
6.
Protein Sci ; 31(8): e4381, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35900021

RESUMO

Enzymes are well known for their catalytic abilities, some even reaching "catalytic perfection" in the sense that the reaction they catalyze has reached the physical bound of the diffusion rate. However, our growing understanding of enzyme superfamilies has revealed that only some share a catalytic chemistry while others share a substrate-handle binding motif, for example, for a particular phosphate group. This suggests that some families emerged through a "substrate-handle-binding-first" mechanism ("binding-first" for brevity) instead of "chemistry-first" and we are, therefore, left to wonder what the role of non-catalytic binders might have been during enzyme evolution. In the last of their eight seminal, back-to-back articles from 1976, John Albery and Jeremy Knowles addressed the question of enzyme evolution by arguing that the simplest mode of enzyme evolution is what they defined as "uniform binding" (parallel stabilization of all enzyme-bound states to the same degree). Indeed, we show that a uniform-binding proto-catalyst can accelerate a reaction, but only when catalysis is already present, that is, when the transition state is already stabilized to some degree. Thus, we sought an alternative explanation for the cases where substrate-handle-binding preceded any involvement of a catalyst. We find that evolutionary starting points that exhibit negative catalysis can redirect the reaction's course to a preferred product without need for rate acceleration or product release; that is, if they do not stabilize, or even destabilize, the transition state corresponding to an undesired product. Such a mechanism might explain the emergence of "binding-first" enzyme families like the aldolase superfamily.


Assuntos
Enzimas , Catálise , Enzimas/metabolismo , Cinética
7.
Microbiol Resour Announc ; 11(5): e0003022, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35499313

RESUMO

In the process of studying the relationship between marine macroalgae and their bacterial symbionts, we isolated a new species of Rhizobium, which we designated Rhizobium sp. nov. C1 (for "Codium 1"). Here, we report the complete genome sequence of Rhizobium sp. nov. C1.

8.
JACS Au ; 2(4): 943-960, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35557756

RESUMO

Enzymes are conformationally dynamic, and their dynamical properties play an important role in regulating their specificity and evolvability. In this context, substantial attention has been paid to the role of ligand-gated conformational changes in enzyme catalysis; however, such studies have focused on tremendously proficient enzymes such as triosephosphate isomerase and orotidine 5'-monophosphate decarboxylase, where the rapid (µs timescale) motion of a single loop dominates the transition between catalytically inactive and active conformations. In contrast, the (ßα)8-barrels of tryptophan and histidine biosynthesis, such as the specialist isomerase enzymes HisA and TrpF, and the bifunctional isomerase PriA, are decorated by multiple long loops that undergo conformational transitions on the ms (or slower) timescale. Studying the interdependent motions of multiple slow loops, and their role in catalysis, poses a significant computational challenge. This work combines conventional and enhanced molecular dynamics simulations with empirical valence bond simulations to provide rich details of the conformational behavior of the catalytic loops in HisA, PriA, and TrpF, and the role of their plasticity in facilitating bifunctionality in PriA and evolved HisA variants. In addition, we demonstrate that, similar to other enzymes activated by ligand-gated conformational changes, loops 3 and 4 of HisA and PriA act as gripper loops, facilitating the isomerization of the large bulky substrate ProFAR, albeit now on much slower timescales. This hints at convergent evolution on these different (ßα)8-barrel scaffolds. Finally, our work reemphasizes the potential of engineering loop dynamics as a tool to artificially manipulate the catalytic repertoire of TIM-barrel proteins.

9.
Arch Microbiol ; 204(1): 114, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34984547

RESUMO

Ribosomes are the protein production machines in all living cells. Yet in contrast to our understanding of how the ribosome translates DNA information into life, the steps involved in ribosome biogenesis, the assembly of the ribosomal RNA (rRNA) and protein molecules that make up the ribosome, remain incomplete. YbeY is considered one of the most physiologically critical endoribonucleases and is implicated in numerous roles involving RNA including 16S rRNA maturation, yet our existing knowledge of its biochemical function fails to explain the phenotypes that manifest when it is lost. In bacteria, it is common for functionally associated genes to be found co-localized in the genome. Across phylogenetically diverse bacteria, the gene encoding ybeZ, encoding a PhoH domain protein, sits adjacent to ybeY. Recent experimental evidence has shown that PhoH domains are RNA helicases, suggesting that this is also the role of YbeZ. The role of an RNA helicase to support the function of YbeY would help explain its reported biochemistry; therefore, we propose a model for the function of YbeZ in 16S rRNA maturation, linking it with the most recent hypotheses on the function of YbeY, that YbeY together with other ribosomal proteins, and ribosome-associated proteins, plays a role in the biogenesis of the small ribosomal subunit. Our model provides a testable hypothesis to resolve the outstanding details surrounding ribosome biogenesis in bacteria.


Assuntos
Proteínas de Escherichia coli , Metaloproteínas , RNA Ribossômico/genética , RNA Ribossômico 16S/genética , Ribossomos/genética
10.
Microbiol Resour Announc ; 10(32): e0062921, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34382834

RESUMO

Kumarahou (Pomaderris kumeraho) is a shrub endemic to New Zealand used in rongoa (traditional medicine). While studying the antimicrobial properties of kumarahou, we isolated a new strain of Pseudomonas fluorescens, which we designated KF1 (for "kumarahou flower 1"). Here, we report the complete genome sequence of P. fluorescens KF1.

11.
ISME J ; 15(11): 3375-3383, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34050259

RESUMO

Alkaline phosphatase (APase) is one of the marine enzymes used by oceanic microbes to obtain inorganic phosphorus (Pi) from dissolved organic phosphorus to overcome P-limitation. Marine APase is generally recognized to perform P-monoesterase activity. Here we integrated a biochemical characterization of a specific APase enzyme, examination of global ocean databases, and field measurements, to study the type and relevance of marine APase promiscuity. We performed an in silico mining of phoA homologs, followed by de novo synthesis and heterologous expression in E. coli of the full-length gene from Alteromonas mediterranea, resulting in a recombinant PhoA. A global analysis using the TARA Oceans, Malaspina and other metagenomic databases confirmed the predicted widespread distribution of the gene encoding the targeted PhoA in all oceanic basins throughout the water column. Kinetic assays with the purified PhoA enzyme revealed that this enzyme exhibits not only the predicted P-monoester activity, but also P-diesterase, P-triesterase and sulfatase activity as a result of a promiscuous behavior. Among all activities, P-monoester bond hydrolysis exhibited the highest catalytic activity of APase despite its lower affinity for phosphate monoesters. APase is highly efficient as a P-monoesterase at high substrate concentrations, whereas promiscuous activities of APase, like diesterase, triesterase, and sulfatase activities are more efficient at low substrate concentrations. Strong similarities were observed between the monoesterase:diesterase ratio of the purified PhoA protein in the laboratory and in natural seawater. Thus, our results reveal enzyme promiscuity of APase playing potentially an important role in the marine phosphorus cycle.


Assuntos
Fosfatase Alcalina , Alteromonas , Fosfatase Alcalina/genética , Escherichia coli , Oceanos e Mares
12.
J Biol Chem ; 296: 100797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019879

RESUMO

Bacterial methionine biosynthesis can take place by either the trans-sulfurylation route or direct sulfurylation. The enzymes responsible for trans-sulfurylation have been characterized extensively because they occur in model organisms such as Escherichia coli. However, direct sulfurylation is actually the predominant route for methionine biosynthesis across the phylogenetic tree. In this pathway, most bacteria use an O-acetylhomoserine aminocarboxypropyltransferase (MetY) to catalyze the formation of homocysteine from O-acetylhomoserine and bisulfide. Despite the widespread distribution of MetY, this pyridoxal 5'-phosphate-dependent enzyme remains comparatively understudied. To address this knowledge gap, we have characterized the MetY from Thermotoga maritima (TmMetY). At its optimal temperature of 70 °C, TmMetY has a turnover number (apparent kcat = 900 s-1) that is 10- to 700-fold higher than the three other MetY enzymes for which data are available. We also present crystal structures of TmMetY in the internal aldimine form and, fortuitously, with a ß,γ-unsaturated ketimine reaction intermediate. This intermediate is identical to that found in the catalytic cycle of cystathionine γ-synthase (MetB), which is a homologous enzyme from the trans-sulfurylation pathway. By comparing the TmMetY and MetB structures, we have identified Arg270 as a critical determinant of specificity. It helps to wall off the active site of TmMetY, disfavoring the binding of the first MetB substrate, O-succinylhomoserine. It also ensures a strict specificity for bisulfide as the second substrate of MetY by occluding the larger MetB substrate, cysteine. Overall, this work illuminates the subtle structural mechanisms by which homologous pyridoxal 5'-phosphate-dependent enzymes can effect different catalytic, and therefore metabolic, outcomes.


Assuntos
Proteínas de Bactérias/metabolismo , Metionina/metabolismo , Thermotoga maritima/metabolismo , Proteínas de Bactérias/química , Vias Biossintéticas , Cristalografia por Raios X , Cinética , Modelos Moleculares , Thermotoga maritima/química
13.
Anal Chim Acta ; 1156: 338218, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781460

RESUMO

Malic acid is a key flavour component of many fruits and vegetables. There is significant interest in technologies for monitoring its concentration, particularly in winemaking. In this review we systematically and comprehensively chart progress in the development of enzyme-based amperometric biosensors for malic acid. We summarise the components and analytical parameters of malic acid sensors that have been reported over the past four decades, discussing their merits and pitfalls in terms of accuracy, sensitivity, linear range, response time and stability. We discuss how advances in electrode materials, electron mediators and the use of coupled enzymes have improved sensitivity and minimised interference, but also uncover a trade-off between sensitivity and linear range. A particular focus of our review is the three types of malate oxidoreductase enzyme that have been used in malic acid biosensors. We describe their different properties and conclude that identifying and/or engineering superior alternatives will be a key future direction for improving the commercial utility of malic acid biosensors.


Assuntos
Técnicas Biossensoriais , Malatos , Eletrodos , Malato Desidrogenase
14.
Protein Sci ; 30(4): 914-921, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33583070

RESUMO

The ongoing biotechnological revolution is rooted in our knowledge of enzymes. However, metagenomics is showing how little we know about Earth's enzyme repertoire. Deep sequencing has revolutionized our view of the tree of life. The genomes of newly-discovered organisms are replete with novel sequences, emphasizing the trove of enzyme structures and functions waiting to be explored by biochemists. Here, we sought to draw attention to the vastness of the "enzymatic dark matter" within the tree of life by placing enzymological knowledge in the context of phylogeny. We used kinetic parameters from the BRaunschweig ENzyme DAtabase (BRENDA) as our proxy for enzymological knowledge. Mapping 12,677 BRENDA entries onto the phylogenetic tree revealed that 55% of these data were from eukaryotes, even though they are the least diverse part of the tree. At the next taxonomic level, only four of 18 archaeal phyla and 24 of 111 bacterial phyla are represented in the BRENDA dataset. One phylum, the Proteobacteria, accounts for over half of all bacterial entries. Similarly, the supergroup Amorphea, which includes animals and fungi, contains over half the data on eukaryotes. Many major taxonomic groups are notable for their complete absence from BRENDA, including the ultra-diverse bacterial Candidate Phyla Radiation. At the species level, five mammals (including human) contribute 15% of BRENDA entries. The taxonomic bias in enzymology is strong, but in the era of gene synthesis we now have the tools to address it. Doing so promises to enrich our biochemical understanding of life and uncover powerful new biocatalysts.


Assuntos
Archaea , Proteínas Arqueais , Bactérias , Proteínas de Bactérias , Bases de Dados de Proteínas , Filogenia , Animais , Archaea/enzimologia , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Humanos
15.
FEMS Microbes ; 2: xtab016, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37334227

RESUMO

Phytophthora species cause disease and devastation of plants in ecological and horticultural settings worldwide. A recently identified species, Phytophthoraagathidicida, infects and ultimately kills the treasured kauri trees (Agathis australis) that are endemic to New Zealand. Currently, there are few options for managing kauri dieback disease. In this study, we sought to assess the efficacy of the oomycide oxathiapiprolin against several life cycle stages of two geographically distinct P. agathidicida isolates. The effective concentration to inhibit 50% of mycelial growth (EC50) was determined to be ∼0.1 ng/ml, indicating that P. agathidicida mycelia are more sensitive to oxathiapiprolin than those from most other Phytophthora species that have been studied. Oxathiapiprolin was also highly effective at inhibiting the germination of zoospores (EC50 = 2-9 ng/ml for the two isolates) and oospores (complete inhibition at 100 ng/ml). In addition, oxathiapiprolin delayed the onset of detached kauri leaf infection in a dose-dependent manner. Collectively, the results presented here highlight the significant potential of oxathiapiprolin as a tool to aid in the control of kauri dieback disease.

16.
Elife ; 92020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185191

RESUMO

Selection for a promiscuous enzyme activity provides substantial opportunity for competition between endogenous and newly-encountered substrates to influence the evolutionary trajectory, an aspect that is often overlooked in laboratory directed evolution studies. We selected the Escherichia coli nitro/quinone reductase NfsA for chloramphenicol detoxification by simultaneously randomising eight active-site residues and interrogating ~250,000,000 reconfigured variants. Analysis of every possible intermediate of the two best chloramphenicol reductases revealed complex epistatic interactions. In both cases, improved chloramphenicol detoxification was only observed after an R225 substitution that largely eliminated activity with endogenous quinones. Error-prone PCR mutagenesis reinforced the importance of R225 substitutions, found in 100% of selected variants. This strong activity trade-off demonstrates that endogenous cellular metabolites hold considerable potential to shape evolutionary outcomes. Unselected prodrug-converting activities were mostly unaffected, emphasising the importance of negative selection to effect enzyme specialisation, and offering an application for the evolved genes as dual-purpose selectable/counter-selectable markers.


In the cell, most tasks are performed by big molecules called proteins, which behave like molecular machines. Although proteins are often described as having one job each, this is not always true, and many proteins can perform different roles. Enzymes are a type of protein that facilitate chemical reactions. They are often specialised to one reaction, but they can also accelerate other side-reactions. During evolution, these side-reactions can become more useful and, as a result, the role of the enzyme may change over time. The main role of the enzyme called NfsA in Escherichia coli bacteria is thought to be to convert molecules called quinones into hydroquinones, which can protect the cell from toxic molecules produced in oxidation reactions. As a side-reaction, NfsA has the potential to protect bacteria from an antibiotic called chloramphenicol, but it generally does this with such low efficacy that the effects are negligible. Producing hydroquinones is helpful to the cell in some situations, but if bacteria are regularly exposed to chloramphenicol, NfsA's role aiding antibiotic resistance could become more important. Over time, the enzyme could evolve to become better at neutralising chloramphenicol. Therefore, NfsA provides an opportunity to study the evolution of proteins and how bacteria adapt to antibiotics. To see how evolution might affect the activity of NfsA, Hall et al. generated 250 million E. coli with either random or targeted changes to the gene that codes for the NfsA enzyme. The resulting variants of NfsA that were most effective against chloramphenicol all had a change that eliminated the enzyme's ability to convert quinones. This result demonstrates a key trade-off between roles for NfsA, where one must be lost for the other to improve. These results demonstrate the interplay between a protein's different roles and provide insight into bacterial drug resistance. Additionally, the experiments showed that the bacteria with improved resistance to chloramphenicol also became more sensitive to another antibiotic, metronidazole. These findings could inform the fight against drug-resistant bacterial infections and may also be helpful in guiding the design of proteins with different roles.


Assuntos
Cloranfenicol/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Nitrorredutases/metabolismo , Domínio Catalítico , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolução Molecular , Inativação Metabólica , Mutação , Nitrorredutases/química , Nitrorredutases/genética , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
17.
Methods Enzymol ; 644: 209-225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32943146

RESUMO

DNA ligases have numerous applications in molecular biology and biotechnology. However, many of these applications require the ligation of blunt-ended DNA termini, which is an inefficient activity for existing commercial ligases. To address this limitation, we describe a compartmentalised self-replication protocol that enables enrichment of the most active ligase variants from an arrayed gene library, e.g., for directed evolution. This protocol employs microwell cultures of Escherichia coli cells expressing individual ligase gene variants as both a source of template DNA to generate blunt-ended linear plasmid amplicons, and a source of expressed ligase to circularise its own plasmid amplicon. Transformation of E. coli with the pooled ligation products enables enrichment for clones expressing the most active ligase variants over successive rounds. To facilitate the evaluation of selected ligases, we also describe an in vitro ligation protocol utilising fluorescently labelled, phosphorylated oligonucleotides that are resolved by electrophoresis on a denaturing acrylamide gel to separate the substrate and product bands resulting from blunt-ended, cohesive-ended or nick-sealing ligations.


Assuntos
DNA Ligases , Escherichia coli , DNA Ligases/genética , Escherichia coli/genética , Biblioteca Gênica , Ligases , Plasmídeos
18.
J Biol Chem ; 295(47): 15948-15956, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32928960

RESUMO

In tryptophan biosynthesis, the reaction catalyzed by the enzyme indole-3-glycerol phosphate synthase (IGPS) starts with a condensation step in which the substrate's carboxylated phenyl group makes a nucleophilic attack to form the pyrrole ring of the indole, followed by a decarboxylation that restores the aromaticity of the phenyl. IGPS from Pseudomonas aeruginosa has the highest turnover number of all characterized IGPS enzymes, providing an excellent model system to test the necessity of the decarboxylation step. Since the 1960s, this step has been considered to be mechanistically essential based on studies of the IGPS-phosphoribosylanthranilate isomerase fusion protein from Escherichia coli Here, we present the crystal structure of P. aeruginosa IGPS in complex with reduced CdRP, a nonreactive substrate analog, and using a sensitive discontinuous assay, we demonstrate weak promiscuous activity on the decarboxylated substrate 1-(phenylamino)-1-deoxyribulose-5-phosphate, with an ∼1000× lower rate of IGP formation than from the native substrate. We also show that E. coli IGPS, at an even lower rate, can produce IGP from decarboxylated substrate. Our structure of P. aeruginosa IGPS has eight molecules in the asymmetric unit, of which seven contain ligand and one displays a previously unobserved conformation closer to the reactive state. One of the few nonconserved active-site residues, Phe201 in P. aeruginosa IGPS, is by mutagenesis demonstrated to be important for the higher turnover of this enzyme on both substrates. Our results demonstrate that despite IGPS's classification as a carboxy-lyase (i.e. decarboxylase), decarboxylation is not a completely essential step in its catalysis.


Assuntos
Proteínas de Bactérias/química , Indol-3-Glicerolfosfato Sintase/química , Modelos Moleculares , Pseudomonas aeruginosa/enzimologia , Domínio Catalítico , Descarboxilação , Cinética
19.
Nat Commun ; 11(1): 3060, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561735

RESUMO

The MLKL pseudokinase is the terminal effector in the necroptosis cell death pathway. Phosphorylation by its upstream regulator, RIPK3, triggers MLKL's conversion from a dormant cytoplasmic protein into oligomers that translocate to, and permeabilize, the plasma membrane to kill cells. The precise mechanisms underlying these processes are incompletely understood, and were proposed to differ between mouse and human cells. Here, we examine the divergence of activation mechanisms among nine vertebrate MLKL orthologues, revealing remarkable specificity of mouse and human RIPK3 for MLKL orthologues. Pig MLKL can restore necroptotic signaling in human cells; while horse and pig, but not rat, MLKL can reconstitute the mouse pathway. This selectivity can be rationalized from the distinct conformations observed in the crystal structures of horse and rat MLKL pseudokinase domains. These studies identify important differences in necroptotic signaling between species, and suggest that, more broadly, divergent regulatory mechanisms may exist among orthologous pseudoenzymes.


Assuntos
Proteínas Quinases/química , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Animais , Galinhas , Cristalografia por Raios X , Citoplasma/enzimologia , Células HEK293 , Cavalos , Humanos , Camundongos , Necroptose , Necrose/metabolismo , Fosforilação , Conformação Proteica , Ratos , Transdução de Sinais , Smegmamorpha , Suínos , Células U937 , Xenopus
20.
PLoS One ; 14(12): e0219879, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31851668

RESUMO

The crisis of antimicrobial resistance is driving research into the phenomenon of collateral sensitivity. Sometimes, when a bacterium evolves resistance to one antimicrobial, it becomes sensitive to others. In this study, we have investigated the utility of Phenotype Microarray (PM) plates for identifying collateral sensitivities with unprecedented throughput. We assessed the relative resistance/sensitivity phenotypes of nine strains of Staphylococcus aureus (two laboratory strains and seven clinical isolates) towards the 72 antimicrobials contained in three PM plates. In general, the PM plates reported on resistance and sensitivity with a high degree of reproducibility. However, a rigorous comparison of PM growth phenotypes with minimum inhibitory concentration (MIC) measurements revealed a trade-off between throughput and accuracy. Small differences in PM growth phenotype did not necessarily correlate with changes in MIC. Thus, we conclude that PM plates are useful for the rapid and high-throughput assessment of large changes in collateral sensitivity phenotypes during the evolution of antimicrobial resistance, but more subtle examples of cross-resistance or collateral sensitivity cannot be identified reliably using this approach.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Antibacterianos/farmacologia , Sensibilidade Colateral a Medicamentos/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA